
Abstract — The Non-Intrusive Spectral Projection (NISP) 
method is widely used for uncertainty quantification of 
numerical models. This technique is based on polynomial 
chaos expansion which requires computation of 
multidimensional integrals. To evaluate those integrals an 
automatic adaptive algorithm, based on the nested Gauss-
Patterson scheme, has been developed to take into account the 
importance of each random variable in the model and applied 
on. Numerical results obtained on an industrial NDT study 
demonstrate the efficiency of the proposed method with 
regard to a required accuracy for the first moment’s records. 

I. INTRODUCTION 

     For many years, deterministic modelling approach 
assuming material properties, sources and geometric 
dimensions to be known, has made it possible to deal with 
great number of applications in engineering field. However, 
design, reliability or risk management require more and 
more to estimate the influence of the uncertainties of the 
input data on the interest output data [1][2].  
One way to take into account the variability of the input 
data is to consider them as random fields or variables. 
Among the different approaches, the Non-Intrusive Spectral 
Projection (NISP) method consists in projecting the 
stochastic solution in the orthogonal polynomial chaos 
basis. The chaos expansion coefficients are calculated by 
evaluating multidimensional integrals on a set of 
deterministic simulations obtained by sampling methods 
like full tensor-product quadrature (Gauss, Clenshaw-
Curtis) or Smolyak sparse grids. Theses schemes are 
isotropic formulas in the sense that the different integral 
directions are discretized in an equal manner. Even with a 
sparse grid, the number of quadrature points highly 
increases with the number of input variables. Moreover, 
integrating in the same way along each stochastic 
dimension may turn out to be not adapted when the 
numerical model is sensitive for only one or small number 
of stochastic dimensions. An adaptive procedure is a way to 
reduce the number of quadrature points by taking 
advantage of the difference of sensitivity along the 
stochastic dimensions [3]. In this work, we propose an 
adaptive algorithm based on non-isotropic nested Gauss-
Patterson formulas taking into account the model global 
sensitivity to the input random variables. This method has 
been applied to the Eddy currents Non Destructive Testing 
inspection of steam generator (SG) tubes with regard to 
clogging of the quatrefoil support plate (SP) in steam 
generators of nuclear power plants. This deposit of 
corrosion products raises a safety concern: to some extent 

this phenomenon may significantly affect the water and 
temperature distribution and steam circulation and cause 
flow induced vibration instability leading to tube cracking 
risks [6]. 

II. STOCHASTIC PROBLEM 

Let us consider a spatial domain D divided into M1 
conducting disjoint subdomains and M2 non conducting 
disjoint subdomains. Permeability and conductivity of D 
are assumed to be random fields, written as µ(x,θ) and 
σ(x,θ). x is a spatial variable and θ denotes the outcome 
belonging to the random space Θ. Since the behavior laws 
are random, B and E are unknown random fields defined on 
D⊗Θ, where ⊗ denotes the Kronecker product. By using 
the magnetic vector potential A and the electric scalar 
potential ϕ formulation, the stochastic magneto-harmonic 
formulation is given by: 
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where ω is the frequency. A(x,θ) and ϕ(x,θ) are defined in 
D⊗Θ, To solve the stochastic problem, the non-intrusive 
spectral projection is used. The method will thereafter be 
described.   

III. NON-INTRUSIVE SPECTRAL PROJECTION 

Let us assume that the permeabilities and the 
conductivities of each subdomain are constant but uniform 
independent random variables. Considering the Legendre 
polynomial chaos as the projection basis of the stochastic 
solutions, the solutions can be expanded as an infinite 
series: 
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where Sα(x) are fields functions of space and Ψα are multi-
variable Legendre polynomials of uniform random 
variables. Since the set of Ψα is an orthogonal basis, the 
projection coefficients Sα(x) are given by: 
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The multidimensional integrals E[Sα(x,θ)Ψα(θ)] are usually 
estimated by Gauss formulas, Smolyak sparse grid or 
sampling methods. In the following, an adaptive and non-
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isotropic algorithm based on the nested Gauss-Patterson 
formulas is used instead of computing the projection 
coefficients. 

IV. ADAPTIVE ALGORITHM 

The proposed dimension-adaptive quadrature method is 
based on the notion of admissible index [4]. At each step of 
the adaptive process, the method aims at locating the most 
influent stochastic dimension. The influence of a dimension 
is estimated with the calculation of local errors which 
correspond to greatest variation of a criterion combining 
Sobol indices and the four first moments. Gauss Patterson 
formulas are used to construct the adaptive nested grid [5]. 
The general algorithm of the method is described below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig.1 Flow chart of the adaptive procedure. 

V. APPLICATION 

Among the several available techniques to evaluate the 
amount of clogging in the foils of the support plates (SP) in 
steam generators, an eddy current inspection technique is 
under development at EDF [6]. The principle consists in 
correlating the difference of magnitude of an axial bobbin 
coil signal at each edge of the Tube Support Plate (TSP) to 
the amount of deposit in the foils (Fig. 2). As TSP and 
deposit material properties are not well known, the aim is to 
evaluate how uncertainties in their permeability and 
conductivity affect the control signal. According to some 
experimental data, the relative permeability and 
conductivity of the TSP (respectively the deposit) have 
been chosen as independent uniform random variables in 
the interval [45, 75], (respectively [1.2, 2.8]) and [1.7*106, 
1.8*106], (respectively [60,100] (S/m)). The moments of 
the differential flux calculated with the adaptive method 
(see Table I) are compared to the moment calculated with 
isotropic Gauss-Legendre formulas (see Table II). Results 
clearly show that the adaptive method makes it possible to 
get the same accuracy with less quadrature points meaning 
less computation time. 

  

 
Fig.2 Finite Element model for the clogging of the quatrefoil Support 

Plate. 
 

TABLE I 
EVOLUTION OF DIIFFERENT MOMENT OF THE REAL FLUX PROBABILITY 

DENSITY OBTAINED BY ISOTROPIC GAUSS-LEGENDRE 
 

Number of 
simulations 

Mean 
(*e-10 Wb) 

Standard deviation 
(*e-11Wb) 

Skewness Kurtosis 

16  3.49 1.52 1.22e-2 1.74 
81 3.49 1.05 4.13e-2 1.97 

256 3.49 1.05 2.74e-2 1.92 
 

TABLE II 
EVOLUTION OF DIIFFERENT MOMENT OF THE REAL FLUX PROBABILITY 

DENSITY OBTAINED BY THE ADAPTATIVE METHOD 
 

Number of 
simulations 

Mean 
(*e-10 Wb) 

Standard deviation 
(*e-11Wb) 

Skewness Kurtosis 

13 3.39 1.51 3.13e-2 1.93 
21 3.49 1.17 1.16e-2 1.89 
33 3.49 1.11 2.98e-2 1.91 
47 3.49 1.05 2.78e-2 1.91 

CONCLUSION 

The proposed adaptive method enables us to find the 
optimal number of deterministic computations if the order 
of polynomial chaos is fixed, or to find the optimal order of 
the chaos if the number of computations is limited. This 
approach is highly competitive when the model sensitivity 
to some random variables is negligible. 
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